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Abstract

Most multi-robot systems are limited to simple reactive architectures (Mataric 97, Parker 94,
Bekey et al. 96).  These architectures interface cleanly to sensors and effectors, support limited
incremental development, and can support real-time performance on low cost compute hardware
(Brooks 86).  However, they limit designs to simplistic representations, such as numeric signals.
These limitations—

•  Hinder design reuse by making it difficult to pass parameters to components; collecting green
pucks and collecting red pucks are often implemented by separate components

•  Hinder robot-computer interfacing because humans typically don’t think and talk at the level
of sonar readings

•  Severely limit the space of tasks that can be performed at all.; they cannot tractibly
implement human/robot dialog, for example

We believe that by providing support for structured representations and simple cognitive
processing in multi-robot systems, we can greatly improve component reusability, allow humans
to direct robot teams with useful high level instructions, and solve dramatically more complex
tasks.  We have developed a class of single-agent architectures, collectively referred to as role-
passing architectures, that support forward- and backward-chaining inference, means-ends
analysis, and reasoning about the agent’s current knowledge and goals.  Unlike conventional
symbolic AI systems, however, they provide all of the performance characteristics of behavior-
based systems [Arkin 98].  In particular, the architecture--

•  Supports distributed representation
•  Provides hard real-time guarantees
•  Maps well into both coarse- and fine-grained parallel architectures, as well as

conventional serial architectures
•  Interfaces simply and cleanly with sensors and effectors
•  Can be implemented using low cost, low power components
•  Can be directly implemented in silicon (e.g. using FPGAs) for tasks requiring super-

human performance (i.e. billions of inferences per second)



Our current implementation [Horswill 98; Beim et al. 97], running on two robots, Hack and
Kludge, supports--

•  Simple natural language instruction following in the domain of fetch-and-follow tasks
using a 30 word vocabulary

•  Reactive problem solving involving inference, subgoal hierarchies, and explicit reasoning
about epistemic actions

•  Goal-directed visual search and adaptive color-based tracking of up to three deformable
objects (Horswill and Barnhart 95)

•  Vision-based navigation using the Polly algorithm (Horswill 95)

simultaneously, all in real time, and all on a low cost 25 MIP DSP.  While the current
implementation is interpreted, it can be easily compiled for higher performance and
exceptionally good scaling properties.  We estimate that a 1000 rule inference network could be
run at 1000 Hz (i.e. 1000 complete reevaluations of the knowledge base per second) on a
StrongARM microcontroller with less than 65K of RAM.  Such a system would require roughly
250mW.

As part of the the DARPA-sponsored Distributed Robotics program, we are now working to
extend this technology to multi-robot systems by linking team members with a wireless network
to exchange sensor and inference data.  Since the architecture already uses distributed processing
and implements inference with a feed-forward combinational logic network, it is straight-forward
to further distribute computation across robots.  This would provide team members with a shared
situation assessment and limited on-demand access to the sensory data of other team members.
In effect, they would have a kind of “group mind.”  We believe such an architecture would
enable:

•  Improved situational awareness
Because the architecture completely recomputes all inferences at sensor rates, it can respond
to contingencies as soon as they are sensed.  Because team members will be linked, the team
can respond as a whole as soon as a member detects a problem.

•  Improved team coordination
Team members can coordinate using high level descriptions of the situation [Tambe 97].
The same mechanisms that are used to track and fuse data within an individual can be used to
fuse data across individuals.

•  Improved human-robot coordination
Human commanders will be able to monitor the team by monitoring the network traffic using
a high level multimodal interface.  Commands can be given to the team by injecting
additional requests into the network.  Since much of the network traffic consists of structured
representations, it is already at the right level of abstraction for human communication.  We
have developed prototype systems for parsing and executing simple natural language
commands on single-robot systems, extending the technology to multi-robot systems should
be straight-forward
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thrust:
egrating reasoning and reactivity

Behavior-based systems
● LowCOWIOWpower
● Real-time response

to contingencies

Symbolic/hybridsystems
● Declarative programming-.
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Allocate sensory resources intelligently

Sense task-relevant environments/
changes

Track task-impact in real time as
environment changes

Can’t take symbolic model for granted
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I Multiple specialized representations&
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~~~tiDirectly interface inference engine to,,,,<,”%:.‘;+
g... sensors

‘“”$” ■ Compile inference rules to feed-forward
WY@.W&&#&$@ network

■ Rerun all inference rules, every clock, at
sensor rates
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Performance characteristics
behavior-based svstems

● Easy grounding in sensors
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w Automatic control of attention

w Much more expressive representation
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I PS to motor system:

Approach DEST
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Predicate extensions can be represented
with a single machine word or a narrow
bus-----------soTq---De-iT--oTq-xg;;t---.........-----,. .......—.“,.,,. -—-..,..-”., .-..-. ,. . . . . . . . . . ..-.—.. -e--.— —.,,,,,,-,,,,.-,,-.,,

near(x) ‘T F F T
see(x) F TT F

Function values require small vectors or
bus=s”--’-””-”--”--””””S”~”O@=X~YO@=X~Y—,-,...-....-.-..-....-—...—

distance(x) 15
---..........-....... ......—.-
0

———,.-——.
0 17

direction(x) 14 87 35 -28
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primitives generate extensions

k
:@
j computed using bitwise and/or:J*-J..:.y@j.:,... 73 x . P(x) A (Q(k) v w(x)),,,+.4’J.,“..$&$%~y,,;,,.,@:,,,., compiles to:

(zerop (Iogandp (Iogior q w))) =lisp format

!(pt?(qhv)) >’ C format’/
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Yefine-pool-output-nodedistance tracker-distance tracker-pool)
Yefine-threshold-node visuallv-near c distance 13)
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Extend distributed
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beyond the individual

Share situational
awareness

Coordinate squad-level
operations
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Patrol
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Landmine clearance
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Difficult to implement with current
technology

● Al systems insufficiently responsive

● B-Based systems can ‘t easily represent it
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